1. x^2y'-2xy+y'=02. (x-y) dy=ydx
Ответы на вопрос
        |x+y-2|+x^2-2xy+y^2=0
|x+y-2|+(x-y)^2 = 0
{x+y-2 = 0
{x-y = 0
x=y
y+y-2 = 0
2y =2
y=1
            To solve the given differential equations, let's take them one by one:
- x^2y' - 2xy + y' = 0
 
To solve this first-order linear ordinary differential equation, we'll group the y' terms together and factor out y':
x^2y' + y' - 2xy = 0
Now, factor out y' from the left-hand side:
y' (x^2 + 1) - 2xy = 0
Now, we can isolate y' by dividing both sides by (x^2 + 1):
y' = 2xy / (x^2 + 1)
Next, we can separate variables by moving y to one side and dx to the other side:
dy/dx = 2xy / (x^2 + 1)
Now, we can integrate both sides with respect to x:
∫(1/y) dy = ∫(2x / (x^2 + 1)) dx
The integral on the left side is simply ln|y|, and the integral on the right side requires a substitution (u-substitution):
Let u = x^2 + 1, then du = 2x dx
The integral becomes:
∫(2x / (x^2 + 1)) dx = ∫(1/u) du = ln|u| + C = ln|x^2 + 1| + C
So, the solution to the differential equation is:
ln|y| = ln|x^2 + 1| + C
Where C is the constant of integration. We can combine the logarithms and raise them as a power of the base:
|y| = |x^2 + 1| * e^C
The constant of integration, C, can be absorbed into another constant, so we simplify as:
|y| = A * |x^2 + 1|
Where A is the combined constant. Since y can be positive or negative, we can remove the absolute value signs:
y = ±A * (x^2 + 1)
This is the general solution to the differential equation.
- (x - y) dy = y dx
 
To solve this separable differential equation, we'll move all y terms to one side and all x terms to the other side:
(x - y) dy - y dx = 0
Now, we can divide both sides by (x - y):
dy/dx = y / (x - y)
Next, we can separate variables by moving y to one side and dx to the other side:
dy / y = dx / (x - y)
Now, we can integrate both sides:
∫(1/y) dy = ∫(1/(x - y)) dx
The integral on the left side is ln|y|, and the integral on the right side requires a substitution:
Let u = x - y, then du = -dy
The integral becomes:
∫(1/(x - y)) dx = -∫(1/u) du = -ln|u| + C = -ln|x - y| + C
So, the solution to the differential equation is:
ln|y| = -ln|x - y| + C
We can combine the logarithms and raise them as a power of the base:
|y| = e^(C) / |x - y|
The constant of integration, C, can be absorbed into another constant, so we simplify as:
|y| = A / |x - y|
Where A is the combined constant. Since y can be positive or negative, we can remove the absolute value signs:
y = ±A / |x - y|
This is the general solution to the differential equation.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			