Y=sqrt((9-x^2)|x-6|) Найти область определения функции
Ответы на вопрос
Смотри............................

To find the domain of the function, we need to determine the values of x for which the function Y is defined. The domain of the function consists of all the possible x-values that make the expression inside the square root non-negative, as well as ensuring that the expression inside the absolute value is valid.
Inside the square root, we have (9 - x^2). For the expression inside the square root to be non-negative, we must have:
9 - x^2 ≥ 0
Inside the absolute value, we have (x - 6). For the expression inside the absolute value to be valid, we don't have any specific constraints.
Now, let's solve the inequalities step-by-step:
Solving 9 - x^2 ≥ 0: Add x^2 to both sides: 9 ≥ x^2 Take the square root of both sides, noting that we have to consider both positive and negative roots: ±√9 ≥ x ±3 ≥ x
The expression inside the absolute value is always valid since it doesn't involve any inequalities.
Now, we have two conditions to consider for the domain:
- x must satisfy ±3 ≥ x
- There are no additional constraints from the absolute value expression.
The domain of the function is the set of all x-values that satisfy both conditions. Therefore, the domain is given by:
Domain = {-3, -2, -1, 0, 1, 2, 3}
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
