
|x^2+x-2|+|x+4|<=x^2+2x+6


Ответы на вопрос

раскрываем модули и получаем систему:
решаем:
+ - +
----[-2]------[1]------>x
+ - +
----[-1]-----[0]----->x
В итоге:
Ответ:



To solve the inequality |x^2+x-2|+|x+4| <= x^2+2x+6, we can break it down into cases based on the sign of the expressions inside the absolute value signs.
Case 1: x^2+x-2 is non-negative (x^2+x-2 >= 0) In this case, the absolute value of x^2+x-2 is equal to the expression inside the absolute value signs. Thus, the inequality becomes: (x^2+x-2) + |x+4| <= x^2+2x+6
Simplifying, we have: x^2 + x - 2 + |x+4| <= x^2 + 2x + 6
The x^2 terms cancel out, and we are left with: x - 2 + |x+4| <= 2x + 6
Rearranging terms, we get: |x + 4| - x <= 8
Case 2: x^2+x-2 is negative (x^2+x-2 < 0) In this case, the absolute value of x^2+x-2 is the negation of the expression inside the absolute value signs. Thus, the inequality becomes: -(x^2+x-2) + |x+4| <= x^2+2x+6
Simplifying, we have: -x^2 - x + 2 + |x+4| <= x^2 + 2x + 6
Combining like terms, we get: -2x + 2 + |x+4| <= 2x + 6
Rearranging terms, we have: |x + 4| - 4x <= 4
Now we need to consider the cases separately:
Case 1a: x + 4 is non-negative (x + 4 >= 0) In this case, the absolute value of x + 4 is equal to the expression inside the absolute value signs. Thus, the inequality becomes: x + 4 - x <= 8
The x terms cancel out, and we have: 4 <= 8
This is true for all values of x.
Case 1b: x + 4 is negative (x + 4 < 0) In this case, the absolute value of x + 4 is the negation of the expression inside the absolute value signs. Thus, the inequality becomes: -(x + 4) - x <= 8
Simplifying, we have: -2x - 4 <= 8
Adding 4 to both sides, we get: -2x <= 12
Dividing by -2 (remember to reverse the inequality since we're dividing by a negative number), we have: x >= -6
Case 2a: x + 4 is non-negative (x + 4 >= 0) In this case, the absolute value of x + 4 is equal to the expression inside the absolute value signs. Thus, the inequality becomes: x + 4 - 4x <= 4
Combining like terms, we have: -3x <= 0
Dividing by -3 (remember to reverse the inequality since we're dividing by a negative number), we have: x >= 0
Case 2b: x + 4 is negative (x + 4 < 0) In this case, the absolute value of x + 4 is the negation of the expression inside the absolute value signs. Thus, the inequality becomes: -(x + 4) - 4x <= 4
Simplifying, we have: -5x - 4 <= 4
Adding 4 to both sides, we get: -5x <= 8
Dividing by -5 (remember to reverse the inequality since we're dividing by a negative number), we have: x >= -8/5
Combining the results from the cases:
Case 1a: x >= -6 Case 1b: x >= -6 Case 2a: x >= 0 Case 2b: x >= -8/5
Taking the intersection of these intervals, we find that the solution to the inequality is: x >= -6
Therefore, the inequality |x^2+x-2|+|x+4| <= x^2+2x+6 holds for all values of x greater than or equal to -6.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili