Вопрос задан 16.07.2023 в 21:20. Предмет Математика. Спрашивает Мажитов Ринат.

Решите уравнениеx^3+7x^2=4x+28​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Globalavto Globalavto.

Пошаговое объяснение:

x^3+7x^2=4x+28

x^3+7x^2 -4x-28=0

(x^3+7x^2) - (4x+28)=0

x^2(x+7) -4(x+7)=0

(x+7)(x^2-4)=0

(x+7)=0

x+7=0

x1=-7

(x^2-4)=0

x^2-4=0

x^2=4

x2,3=+-√4=+-2

x2=2

x3=-2

Ответ: (-7; -2; 2)

0 0
Отвечает Булискерия Лиза.

x³+7x² = 4x+28

x²(x+7) = 4(x+7)

x²(x+7)-4(x+7) = 0

(x+7)(x²-4) = 0

(x+7)(x-2)(x+2) = 0

x = -7

x = ±2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить уравнение x^3 + 7x^2 = 4x + 28, нужно перенести все члены в одну сторону, чтобы уравнение стало равным нулю:

x^3 + 7x^2 - 4x - 28 = 0

После этого можно применить различные методы решения кубического уравнения. Однако, в данном случае можно заметить, что x = 2 является одним из корней уравнения. Это можно проверить, подставив x = 2:

2^3 + 7 * 2^2 - 4 * 2 - 28 = 0 8 + 28 - 8 - 28 = 0 0 = 0

Таким образом, x = 2 является корнем данного уравнения. Чтобы найти остальные корни, можно разделить исходное уравнение на (x - 2) с использованием синтетического деления:

(x^3 + 7x^2 - 4x - 28) / (x - 2)

2 | 1 7 -4 -28 |___________ 1 9 14 0

Таким образом, после деления получается квадратное уравнение x^2 + 9x + 14 = 0. Мы можем решить это уравнение с использованием факторизации, формулы квадратного корня или комбинированного метода:

(x + 2)(x + 7) = 0

Из этого следует, что x = -2 или x = -7.

Таким образом, уравнение x^3 + 7x^2 = 4x + 28 имеет три корня: x = 2, x = -2 и x = -7.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос