Вопрос задан 16.07.2023 в 21:14. Предмет Математика. Спрашивает Вишня Ева.

Решить системы. X+y=2 5x+80y=130. И 5s-7t=18,9 s+4t=_8,1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Токенов Санжар.

Пошаговое объяснение:

\left \{ {{x+y=2} \atop {5x+8y=130}} \right. \\ \\ \left \{ {{x=2-y} \atop {5x+8y=130}} \right. \\ \\ 5*(2-y)+8y=130\\10-5y+8y=130\\3y=120\\y=40\\x=2-40=-38

Ответ : х=-38; у=40

\left \{ {{5s-7t=18,9} \atop {s+4t=-8,1}} \right. \\ \\ s=-8,1-4t\\5*(-8,1-4t)-7t=18,9\\-40,5-20t-7t=18,9\\-27t=18,9+40,5\\-27t=59,4\\t=-2,2\\s=-8,1-4*(-2,2)=0.7

Ответ: s=0,7; t=-2,2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's solve the systems of equations one by one:

  1. Solving the system: x+y=2x + y = 2 5x+80y=1305x + 80y = 130

We can use the method of substitution or elimination. I'll use the elimination method.

Step 1: Multiply the first equation by 5 to make the coefficients of x in both equations equal. 5(x+y)=5×25x+5y=105(x + y) = 5 \times 2 \Rightarrow 5x + 5y = 10

Step 2: Subtract the second equation from the equation obtained in Step 1 to eliminate the x term. (5x+5y)(5x+80y)=10130(5x + 5y) - (5x + 80y) = 10 - 130 5y80y=1205y - 80y = -120 75y=120-75y = -120

Step 3: Solve for y. y=12075=85y = \frac{-120}{-75} = \frac{8}{5}

Step 4: Substitute the value of y back into the first equation to solve for x. x+85=2x + \frac{8}{5} = 2 x=285x = 2 - \frac{8}{5} x=25x = \frac{2}{5}

So the solution to the first system of equations is x=25x = \frac{2}{5} and y=85y = \frac{8}{5}.

  1. Solving the system: 5s7t=185s - 7t = 18 9s+4t=89s + 4t = -8

Again, we can use either substitution or elimination method. I'll use the elimination method.

Step 1: Multiply the first equation by 9 and the second equation by 5 to make the coefficients of s in both equations equal.

9(5s7t)=9×1845s63t=1629(5s - 7t) = 9 \times 18 \Rightarrow 45s - 63t = 162 5(9s+4t)=5×845s+20t=405(9s + 4t) = 5 \times -8 \Rightarrow 45s + 20t = -40

Step 2: Add the two equations to eliminate the s term.

(45s63t)+(45s+20t)=16240(45s - 63t) + (45s + 20t) = 162 - 40 90s43t=12290s - 43t = 122

Step 3: Now we have a linear equation in two variables (s and t).

To solve for s, let's express s in terms of t from the equation 90s43t=12290s - 43t = 122:

90s=43t+12290s = 43t + 122 s=43t+12290s = \frac{43t + 122}{90}

Step 4: Substitute the expression for s in terms of t into one of the original equations to solve for t. Let's use the first equation:

5s7t=185s - 7t = 18 5(43t+12290)7t=185\left(\frac{43t + 122}{90}\right) - 7t = 18 43t+122187t=18\frac{43t + 122}{18} - 7t = 18 43t+122126t=324043t + 122 - 126t = 3240

Step 5: Solve for t.

83t=3240122-83t = 3240 - 122 83t=3118-83t = 3118 t=311883t = \frac{3118}{-83} t37.57t \approx -37.57

Step 6: Substitute the value of t back into the expression for s to solve for s.

s=43t+12290s = \frac{43t + 122}{90} s=43(37.57)+12290s = \frac{43(-37.57) + 122}{90} s7.74s \approx -7.74

So the solution to the second system of equations is s7.74s \approx -7.74 and t37.57t \approx -37.57.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос