
0,3x - 4 - x < 7,2 - 8x; 4^x - 3^x+1 = 4^x-1 + 3; lg(x-4)+lg(x+3)=lg(5+4)


Ответы на вопрос

Ответ:
С третьим непонятно это натуральный логарифм?




Let's solve each equation step by step:
- 0.3x - 4 - x < 7.2 - 8x
To simplify the equation, let's combine like terms:
-0.7x - 4 < 7.2 - 8x
Add 8x to both sides:
7.3x - 4 < 7.2
Add 4 to both sides:
7.3x < 11.2
Divide both sides by 7.3 to isolate x:
x < 11.2 / 7.3
x < 1.534
Therefore, the solution to the inequality is x < 1.534.
- 4^x - 3^(x+1) = 4^(x-1) + 3
Let's simplify the equation by using some properties of exponents:
4^x - 3 * 3^x = 4^(x - 1) + 3
Now let's simplify further:
4^x - 3 * 3^x = (4^x / 4) + 3
Multiply both sides by 4 to eliminate the fraction:
4^(x + 1) - 3 * 3^x = 4^x + 12
Let's rewrite 3 * 3^x as 3^(x + 1):
4^(x + 1) - 3^(x + 1) = 4^x + 12
Since we have the same base on both sides (4 and 3), we can equate the exponents:
x + 1 = x + 12
Subtract x from both sides:
1 = 12
This is not a true statement. Therefore, the equation has no solution.
- lg(x - 4) + lg(x + 3) = lg(5 + 4)
Let's simplify the equation using the properties of logarithms:
lg((x - 4)(x + 3)) = lg(9)
Since the logarithm function is one-to-one, we can drop the logarithm on both sides:
(x - 4)(x + 3) = 9
Expanding the left side:
x^2 - x - 12 = 9
Rearranging the equation:
x^2 - x - 21 = 0
Now let's solve this quadratic equation by factoring or using the quadratic formula. Factoring gives:
(x - 4)(x + 3) = 0
Setting each factor equal to zero:
x - 4 = 0 or x + 3 = 0
x = 4 or x = -3
Therefore, the solutions to the equation are x = 4 and x = -3.
Please note that I have solved the equations to the best of my ability based on the information provided.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili