
1) cosx= -sinx2)sin^2x+4cos^2x=4cosx


Ответы на вопрос

Ответ:
решение на фотографии




To solve the given trigonometric equations, let's tackle them one by one:
- cos(x) = -sin(x)
To solve this equation, we can use trigonometric identities to express both sides in terms of a single trigonometric function. One of the most commonly used identities is:
sin^2(x) + cos^2(x) = 1
Now, let's manipulate the given equation:
cos(x) = -sin(x)
Square both sides:
cos^2(x) = sin^2(x)
Now, use the identity sin^2(x) + cos^2(x) = 1:
1 - sin^2(x) = sin^2(x)
Rearrange the equation:
2sin^2(x) = 1
Divide both sides by 2:
sin^2(x) = 1/2
Now, take the square root of both sides (remembering to consider both positive and negative square roots):
sin(x) = ±√(1/2)
Now, we need to find the values of x in the interval [0, 2π] that satisfy the equation sin(x) = ±√(1/2). The values of sin(x) equal to √(1/2) occur at π/4 and 3π/4. The values of sin(x) equal to -√(1/2) occur at 5π/4 and 7π/4. So, the solutions are:
x = π/4, 3π/4, 5π/4, 7π/4
- sin^2(x) + 4cos^2(x) = 4cos(x)
To solve this equation, we can use the same trigonometric identity as before:
sin^2(x) + cos^2(x) = 1
Now, let's manipulate the given equation:
sin^2(x) + 4cos^2(x) = 4cos(x)
Using the identity sin^2(x) + cos^2(x) = 1:
1 + 3cos^2(x) = 4cos(x)
Rearrange the equation:
3cos^2(x) - 4cos(x) + 1 = 0
Now, this is a quadratic equation in terms of cos(x). To solve it, we can factorize it:
(3cos(x) - 1)(cos(x) - 1) = 0
Now set each factor to zero and solve for cos(x):
3cos(x) - 1 = 0 3cos(x) = 1 cos(x) = 1/3
cos(x) - 1 = 0 cos(x) = 1
Now, let's find the corresponding values of x in the interval [0, 2π] for each solution:
For cos(x) = 1/3: x = arccos(1/3) ≈ 1.23096 radians ≈ 70.53 degrees
For cos(x) = 1: x = arccos(1) = 0 radians = 0 degrees
So, the solutions for the second equation are:
x ≈ 1.23096 radians ≈ 70.53 degrees and x = 0 radians = 0 degrees.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili