
Вычислить площадь фигуры, ограниченную кривыми (+ рисунок) Y=(x-2)^2, y=x


Ответы на вопрос

Пошаговое объяснение:
пошаговое объяснение




Чтобы вычислить площадь фигуры, ограниченной кривыми Y = (x - 2)^2 и y = x, нужно найти точки их пересечения и интегрировать разность между ними по оси x.
Давайте сначала найдем точки пересечения кривых, приравняв уравнения: (x - 2)^2 = x
Раскроем скобки: x^2 - 4x + 4 = x
Приведем подобные члены: x^2 - 5x + 4 = 0
Это квадратное уравнение. Решим его с помощью квадратного корня или факторизации.
Факторизуем уравнение: (x - 1)(x - 4) = 0
Отсюда получаем две точки пересечения: x1 = 1 и x2 = 4
Теперь мы можем построить график кривых, чтобы визуализировать их пересечение:
markdown | *
| *
| *
| *
| *
| *
| *
| *
|*_______
Теперь, чтобы вычислить площадь фигуры, ограниченной этими кривыми, нужно интегрировать разность между ними по оси x от x = 1 до x = 4.
Площадь фигуры будет равна: S = ∫[1,4] [(x - 2)^2 - x] dx
Вычислим этот интеграл: S = ∫[1,4] (x^2 - 4x + 4 - x) dx
S = ∫[1,4] (x^2 - 5x + 4) dx
S = [x^3/3 - (5x^2)/2 + 4x] [1,4]
S = [(4^3/3 - (54^2)/2 + 44) - (1^3/3 - (51^2)/2 + 41)]
S = [(64/3 - (80/2) + 16) - (1/3 - (5/2) + 4)]
S = [(64/3 - 40 + 16) - (1/3 - 5/2 + 4)]
S = [(64/3 - 24) - (1/3 - 5/2 + 4)]
S = [64/3 - 24 - 1/3 + 5/2 - 4]
S = 64/3 - 72/3 - 1/3 + 15/2 - 4
S = -8/3 - 1/3 + 15/2 - 4
S = -9/3 + 15/2 - 4
S = -3 + 15/2 - 4
S = -3 + 7.5 - 4
S = 0.5
Таким образом, площадь фигуры, ограниченной кривыми Y = (x - 2)^2 и y = x, равна 0.5 единицы площади.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili