Вопрос задан 14.07.2023 в 21:44. Предмет Математика. Спрашивает Иваненко Ольга.

Напишите: бесконечная периодическая десятичная дробь 0,2 (51) в виде обычного. Спасибо.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мальцев Никита.

0.2(51) = 251-2/990 = 249/990 = 83/330

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Бесконечная периодическая десятичная дробь 0,2(51) можно представить в виде обычной дроби следующим образом:

Пусть х = 0,2(51).

Умножим обе части уравнения на 100, чтобы избавиться от десятичной запятой: 100х = 20,51(51).

Вычтем из обоих частей уравнения исходное уравнение: 100х - х = 20,51(51) - 0,2(51).

Упростим выражение: 99х = 20,51(51) - 0,2(51).

Теперь мы имеем конечное число слева и периодическое число справа.

99х = 20,5151 - 0,251.

99х = 20,2649.

Теперь разделим обе части уравнения на 99: х = 20,2649 / 99.

Таким образом, обычное представление бесконечной периодической десятичной дроби 0,2(51) равно 20,2649 / 99.

При необходимости, можно дальше упростить или приблизить эту дробь.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос