
|x+2|<=1 |x-3|<2 |x+1|=>3 |x-0,3|<4 |1,7+x|>5 |x+4,8|<=6


Ответы на вопрос

1) Ix+2I≤1
-1≤x+2≤1
-1-2≤x≤1-2
-3≤x≤-1
x∈[-3; -1]
2)
Ix-3I<2
-2<x-3<2
-2+3<x<2+3
1<x<5
x∈(1; 5)
3)
Ix+1I≥3
-3≥x+1≥3
-4≥x≥2
x∈(-∞; -4] U [2; ∞)
4)
Ix-0,3I<4
-4+0,3<x<4+0,3
-3,7<x<4,3
x∈(-3,7; 4,3)
5) Ix+1,7I>5
-5-1,7>x>5-1,7
x∈(-∞; -6,7)U(3,3; ∞)
6) Ix+4,8I≤6
-6-4,8≤x≤6-4,8
-10,8≤x≤1,2
x∈[-10,8; 1,2]



To solve these inequalities, we'll break them down one by one:
|x + 2| <= 1: The absolute value of any number is always non-negative, so the absolute value of x + 2 can be at most 1. This means -1 <= x + 2 <= 1. Solving for x, we have -3 <= x <= -1.
|x - 3| < 2: Similar to the previous case, we have -2 < x - 3 < 2. Adding 3 to all parts of the inequality gives 1 < x < 5.
|x + 1| >= 3: The absolute value of x + 1 can be greater than or equal to 3. This leads to two cases: x + 1 >= 3 and x + 1 <= -3. Solving these separately, we get x >= 2 and x <= -4.
|x - 0.3| < 4: Following the same process, we get -4 < x - 0.3 < 4. Adding 0.3 to all parts yields -3.7 < x < 4.3.
|1.7 + x| > 5: Here, we have two cases: 1.7 + x > 5 and 1.7 + x < -5. Solving these separately, we get x > 3.3 and x < -6.7.
|x + 4.8| <= 6: We can rewrite this inequality as -6 <= x + 4.8 <= 6. Subtracting 4.8 from all parts gives -10.8 <= x <= 1.2.
Combining the solutions from each inequality, we can find the overall solution range for x:
-10.8 <= x <= -6.7 or -4 <= x <= -1 or 1.2 <= x <= 4.3.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili