Вопрос задан 11.07.2023 в 06:02. Предмет Математика. Спрашивает Стародумова Елена.

у прямокутному трикутнику проекції катетів на гіпотенузу дорівнюють 4 і 9 см.Знайдіть площу

трикутника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Модин Федя.

Ответ:

39 см²

Пошаговое объяснение:

На фото расписаны действия


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Нехай прямокутний трикутник має катети a і b, а гіпотенузу позначимо як c. Тоді ми маємо такі співвідношення:

a^2 + b^2 = c^2 (теорема Піфагора)

Також дано проекції катетів на гіпотенузу, які позначимо як p і q. Проекції катетів утворюють подібні трикутники з вихідним трикутником. Тобто:

p / a = q / b

За даними, p = 4 см і q = 9 см.

Ми можемо розв'язати друге рівняння відносно одного з катетів, наприклад, a:

a = (p * b) / q

Підставляючи це значення a в перше рівняння за теоремою Піфагора, маємо:

(p^2 * b^2) / q^2 + b^2 = c^2

Замість b^2 можемо підставити ((q^2 * a^2) / p^2) за другим рівнянням:

(p^2 * (q^2 * a^2) / p^2) / q^2 + ((q^2 * a^2) / p^2) = c^2

Спростимо вираз:

(q^2 * a^2) / q^2 + ((q^2 * a^2) / p^2) = c^2

a^2 + ((q^2 * a^2) / p^2) = c^2

a^2 * (1 + (q^2 / p^2)) = c^2

a^2 * (p^2 + q^2) / p^2 = c^2

a^2 * (4^2 + 9^2) / 4^2 = c^2

a^2 * (16 + 81) / 16 = c^2

a^2 * 97 / 16 = c^2

a^2 * 97 = 16 * c^2

a^2 = (16 * c^2) / 97

Таким чином, ми знайшли квадрат катета a через гіпотенузу c. Тепер ми можемо використовувати площу прямокутного трикутника:

Площа = (a * b) / 2

Підставляючи значення a та b, яке ми знайшли вище, отримаємо:

Площа = ((16 * c^2) / 97 * b) / 2

Площа = (8 * c^2 * b) / 97

Таким чином, площа прямокутного трикутника знайдена через гіпотенузу та один із катетів.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос