 
5 - 8cos^2 x = sin 2x
 0
        0
         0
        0
    Ответы на вопрос
 
        решение во вложении
за мазню извините

 0
                    0
                     0
                    0
                 
            To solve the equation 5 - 8cos^2(x) = sin(2x), we can use trigonometric identities to simplify it and find the values of x that satisfy the equation.
Let's start by using the double angle identity for sine: sin(2x) = 2sin(x)cos(x).
The equation becomes:
5 - 8cos^2(x) = 2sin(x)cos(x)
Rearranging the terms, we have:
8cos^2(x) + 2sin(x)cos(x) - 5 = 0
Now, let's simplify further by using the identity: cos^2(x) + sin^2(x) = 1.
Substituting cos^2(x) = 1 - sin^2(x) into the equation, we get:
8(1 - sin^2(x)) + 2sin(x)(1 - sin^2(x)) - 5 = 0
Expanding and rearranging the terms:
8 - 8sin^2(x) + 2sin(x) - 2sin^3(x) - 5 = 0
Combining like terms:
-2sin^3(x) - 8sin^2(x) + 2sin(x) + 3 = 0
Now, let's factor out a sin(x) term:
sin(x)(-2sin^2(x) - 8sin(x) + 2) + 3 = 0
We can see that sin(x) = 0 is one solution, so x = 0° or x = π radians.
To find the remaining solutions, we need to solve the quadratic equation -2sin^2(x) - 8sin(x) + 2 = 0.
Dividing the equation by -2:
sin^2(x) + 4sin(x) - 1 = 0
Now, we can use the quadratic formula to solve for sin(x):
sin(x) = (-b ± √(b^2 - 4ac)) / (2a)
sin(x) = (-4 ± √(4^2 - 4(1)(-1))) / (2(1))
sin(x) = (-4 ± √(16 + 4)) / 2
sin(x) = (-4 ± √20) / 2
sin(x) = (-4 ± 2√5) / 2
sin(x) = -2 ± √5
Since the range of the sine function is -1 ≤ sin(x) ≤ 1, the solution -2 + √5 is not valid.
Therefore, the remaining valid solutions for sin(x) are:
sin(x) = -2 - √5
To find the corresponding values of x, we can use the inverse sine function:
x = arcsin(-2 - √5)
Using a calculator, we find:
x ≈ -1.855 radians or x ≈ -106.32°
Therefore, the solutions to the equation 5 - 8cos^2(x) = sin(2x) are:
x = 0° or x = π radians (corresponding to sin(x) = 0)
x ≈ -106.32° or x ≈ -1.855 radians (corresponding to sin(x) = -2 - √5)
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			