Вопрос задан 09.07.2023 в 21:33. Предмет Математика. Спрашивает Дашко Даниил.

Автобус и грузовая машина, скорость которой на 17 км/ч больше скорости автобуса, выехали

одновременно навстречу друг другу из двух городов, расстояние между которыми - 596 км. Найди скорости автобуса игрузовой машины, если известно, что они встретились через 4 ч. после выезда.Ответ:скорость автобусаКМ/Ч;скорость грузовой машины -км/ч.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лопатко Илья.

Ответ:

596-17*4=528(км)

528\8=66(км/ч)- скорость автобуса

66+17=83(км/ч)-скорость грузовой машины

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть xx - это скорость автобуса (в км/ч), а x+17x + 17 - скорость грузовой машины (в км/ч).

Они выезжают навстречу друг другу из двух городов, и расстояние между городами составляет 596 км. Время, через которое они встретятся, равно 4 часам.

Мы можем использовать формулу расстояние=скорость×время\text{расстояние} = \text{скорость} \times \text{время}, чтобы выразить расстояние, которое каждый из них проехал, и затем сумму расстояний должны равняться расстоянию между городами.

Для автобуса: расстояниеавтобус=скоростьавтобус×время=x×4\text{расстояние}_{\text{автобус}} = \text{скорость}_{\text{автобус}} \times \text{время} = x \times 4.

Для грузовой машины: расстояниегрузовая машина=скоростьгрузовая машина×время=(x+17)×4\text{расстояние}_{\text{грузовая машина}} = \text{скорость}_{\text{грузовая машина}} \times \text{время} = (x + 17) \times 4.

Сумма расстояний должна быть равна расстоянию между городами: расстояниеавтобус+расстояниегрузовая машина=596\text{расстояние}_{\text{автобус}} + \text{расстояние}_{\text{грузовая машина}} = 596.

Подставляем выражения для расстояний и решаем уравнение:

x×4+(x+17)×4=596x \times 4 + (x + 17) \times 4 = 596.

Раскрываем скобки и упрощаем:

4x+4x+68=5964x + 4x + 68 = 596.

Объединяем переменные:

8x+68=5968x + 68 = 596.

Вычитаем 68 с обеих сторон:

8x=5288x = 528.

Делим на 8:

x=66x = 66.

Таким образом, скорость автобуса xx составляет 66 км/ч, а скорость грузовой машины x+17x + 17 составляет 66+17=8366 + 17 = 83 км/ч.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос