
X^2-24x+100 (Яке найменше значення може набути цей вираз)


Ответы на вопрос

x^2 -24x +100 = 0
D = b^2 -4ac = 576 -4×1×100 = 576 - 400 = 176 > 0
x1 = 24+13,26 / 2 = 18,63
x2 = 24-13,26 / 2 = 5,37
Ответ: 5,37.



Ответ: 99,5204
Пошаговое объяснение:
у=х²-24х+100- квадратичная функция, график - парабола, ветви направлены вверх, т.к. а=1>0.
Найдём координаты вершины параболы:
х= -а/2b; х= -1/-48=1/48≈0,02;
у=0,02²-24*0,02+100=0,0004-0,48+100=99,5204;
(0,02; 99,5204)- координаты вершины параболы.
Функция принимает наименьшее значение при у=99,5204.



Для знаходження найменшого значення виразу x^2 - 24x + 100, потрібно з'ясувати координати вершини параболи, яку він утворює. Формула для знаходження вершини параболи x = -b/(2a), де a - це коефіцієнт при x^2, а b - коефіцієнт при x у вашому виразі.
Ваш вираз: x^2 - 24x + 100 a = 1 (коефіцієнт при x^2) b = -24 (коефіцієнт при x)
x = -(-24) / (2 * 1) = 24 / 2 = 12
Отже, x-координата вершини параболи дорівнює 12. Тепер ми можемо підставити це значення x у вихідний вираз, щоб знайти відповідне y-значення:
y = x^2 - 24x + 100 y = 12^2 - 24 * 12 + 100 y = 144 - 288 + 100 y = -44
Отже, найменше значення виразу x^2 - 24x + 100 дорівнює -44.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili