
7. Сколько человек нужно пригласить на праздничный вечер, чтобы по крайней мере у шестерых из них
дни рождения были в одном и том же месяце? A. 35B. 41C. 61D. 55E. 50быстро 

Ответы на вопрос

Ответ:
С. 61
Пошаговое объяснение:
В году 12 месяцев. Если предположить, что в каждом месяце 5 именинников, то
12×5=60 приглашенных.
День рождения 61го гостя станет 6м в каком-либо месяце.



Для решения этой задачи используется парадокс дней рождения. Чтобы с вероятностью более 50% у шестерых из 7 человек дни рождения были в одном и том же месяце, нужно посчитать, сколько человек нужно пригласить, чтобы вероятность этого события была больше 50%.
Мы можем воспользоваться формулой для обратной вероятности. Пусть P(n) - вероятность того, что у n человек дни рождения не будут в одном и том же месяце, тогда вероятность того, что у шестерых из n дни рождения будут в одном и том же месяце, равна 1 - P(n).
P(1) = 1 (первый человек может выбрать любой месяц) P(2) = 1 (второй человек также может выбрать любой месяц)
Теперь для n >= 3: P(n) = 1 - (количество способов, при которых у всех n человек дни рождения разные) / (всего количество возможных комбинаций дней рождения у n человек)
Количество способов, при которых у всех n человек дни рождения разные, можно посчитать так:
- Первый человек может выбрать любой месяц (12 месяцев).
- Второй человек не может выбрать месяц, который уже выбрал первый человек (11 месяцев).
- Третий человек не может выбрать месяцы, которые уже выбрали первый и второй человеки (10 месяцев).
И так далее, до n-го человека.
Теперь мы можем составить формулу для P(n): P(n) = 1 - (12/12) * ((12 - 1)/12) * ((12 - 2)/12) * ... * ((12 - n + 1)/12)
Теперь мы хотим найти наименьшее целое значение n, при котором P(n) < 0.5 (менее 50% вероятности, что у шестерых из n дни рождения будут в одном и том же месяце).
Вычислим P(n) для разных значений n: P(3) ≈ 0.6364 P(4) ≈ 0.8485 P(5) ≈ 0.9234 P(6) ≈ 0.9717 P(7) ≈ 0.9916
Таким образом, вероятность P(7) равна примерно 0.9916, что означает, что с вероятностью около 99.16% у шестерых из 7 человек дни рождения будут в одном и том же месяце.
Ответ: 7 человек нужно пригласить на праздничный вечер.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili