Вопрос задан 29.06.2023 в 01:27. Предмет Математика. Спрашивает Чихирев Данил.

4. Вычислить НОК для чисел: а) 3 и 17;C) 5 и 68; е) 2200 и 16500;b) 17 и 34;d) 28 и 70; f) 32; 48

и 44.пожалуйста помогите​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макаров Павлик.
A) 51 c) 340 e) 33000 b) 34 d) 140 f) 1056
0 0
Отвечает Казаринова Анна.

Ответ:

Пошаговое объяснение:

Нок это наименьшее общее кратное, тоесть нужно найти самое маленькое число, которое делится на эти числа.

1. 3 и 17

Получается 51

2.5 и 68

Получается 340

3.17 и 34

Получается 34

4.28 и 70

Получается 140

5.32,48 и 44

Получается 1056

6.2200 и 16500

Получается 99000

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы вычислить наименьшее общее кратное (НОК) для данных чисел, можно воспользоваться различными методами. Один из способов - это разложение чисел на их простые множители и вычисление НОК на основе этих множителей. Давайте посчитаем НОК для каждой из задач:

а) 3 и 17: НОК(3, 17) = 3 * 17 = 51

б) 5 и 68: Сначала разложим числа на простые множители: 5 = 5 68 = 2 * 2 * 17

Теперь вычислим НОК, учитывая максимальное количество каждого простого множителя: НОК(5, 68) = 2 * 2 * 5 * 17 = 340

в) 2200 и 16500: Сначала разложим числа на простые множители: 2200 = 2 * 2 * 2 * 5 * 5 * 11 16500 = 2 * 2 * 3 * 5 * 5 * 11 * 5

Теперь вычислим НОК, учитывая максимальное количество каждого простого множителя: НОК(2200, 16500) = 2 * 2 * 2 * 3 * 5 * 5 * 11 * 5 = 33000

г) 17 и 34: Сначала разложим числа на простые множители: 17 = 17 34 = 2 * 17

Теперь вычислим НОК, учитывая максимальное количество каждого простого множителя: НОК(17, 34) = 2 * 17 = 34

д) 28 и 70: Сначала разложим числа на простые множители: 28 = 2 * 2 * 7 70 = 2 * 5 * 7

Теперь вычислим НОК, учитывая максимальное количество каждого простого множителя: НОК(28, 70) = 2 * 2 * 5 * 7 = 140

е) 32, 48 и 44: Сначала разложим числа на простые множители: 32 = 2 * 2 * 2 * 2 * 2 48 = 2 * 2 * 2 * 2 * 3 44 = 2 * 2 * 11

Теперь вычислим НОК, учитывая максимальное количество каждого простого множителя: НОК(32, 48, 44) = 2 * 2 * 2 * 2 * 2 * 3 * 11 = 1056

Итак, НОК для данных чисел равно:

а) 51 б) 340 в) 33000 г) 34 д) 140 е) 1056

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос