
-4 arcsin (-√2/2)+8 arccos (- √2/2)-15 arcctg √3/3=


Ответы на вопрос

Ответ:
2π.
Пошаговое объяснение:
-4•arcsin (-√2/2) + 8 arccos (- √2/2) - 15 arcctg √3/3 = + 4•arcsin (√2/2) + 8•(π - arccos (√2/2) -15• arcctg (√3/3) = 4•π/4 + 8•(π - π/4) - 15•π/3 = π + 8•3π/4 - 5π = π + 6π - 5π = 2π.



To find the value of the expression:
-4 arcsin(-√2/2) + 8 arccos(-√2/2) - 15 arcctg(√3/3)
First, we need to evaluate each of the trigonometric functions for the given values:
arcsin(-√2/2): The arcsin function gives an angle whose sine is equal to the argument. In this case, we are looking for an angle whose sine is -√2/2. This angle is -π/4 (or -45 degrees).
arccos(-√2/2): The arccos function gives an angle whose cosine is equal to the argument. In this case, we are looking for an angle whose cosine is -√2/2. This angle is also -π/4 (or -45 degrees).
arcctg(√3/3): The arcctg (arctan) function gives an angle whose tangent is equal to the argument. In this case, we are looking for an angle whose tangent is √3/3. This angle is π/6 (or 30 degrees).
Now, substitute these values into the original expression:
-4(-π/4) + 8(-π/4) - 15(π/6)
Simplify each term:
-π + (-2π) - (5/2)π
Now, add the terms together:
-π - 2π - (5/2)π = -π(1 + 2 + 5/2)
Combine the constants:
-π(5/2 + 4/2 + 5/2) = -π(9/2)
Now, multiply:
-9π/2
So, the value of the expression is -9π/2, which is approximately equal to -14.13716.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili