Вопрос задан 25.06.2023 в 22:43. Предмет Математика. Спрашивает Неделько Злата.

Помогите срочно дам 40 балловвычислите:1) cosa, tga, sin2a, если sina=4/5 и π/2<a<π​​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Монахова Ангелина.

Ответ:

Пошаговое объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления значения косинуса (cos), тангенса (tan) и синуса (sin) угла "a" мы можем использовать следующие формулы, зная значение синуса угла "a":

  1. cos(a) = ±√(1 - sin^2(a))
  2. tan(a) = sin(a) / cos(a)
  3. sin(2a) = 2sin(a)cos(a)

У нас дано значение sin(a) = 4/5, и мы знаем, что угол "a" находится в интервале π/2 < a < π, что соответствует четвертой четверти, где косинус отрицателен. Таким образом, мы можем продолжить вычисления:

  1. cos(a) = -√(1 - (4/5)^2) = -√(1 - 16/25) = -√(9/25) = -3/5

  2. tan(a) = (4/5) / (-3/5) = -4/3

  3. sin(2a) = 2 * (4/5) * (-3/5) = -24/25

Таким образом, получаем следующие значения:

  1. cos(a) = -3/5
  2. tan(a) = -4/3
  3. sin(2a) = -24/25

Надеюсь, это помогло! Если у вас есть еще вопросы, не стесняйтесь задавать.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос