Вопрос задан 22.06.2023 в 17:44. Предмет Математика. Спрашивает Дворская Катерина.

Log6-x((x-6)^2/x-2) >= 2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чернова Даша.

Ответ:

решение на фотографии.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality log6x((x6)2x2)2\log_{6-x}\left(\frac{(x-6)^2}{x-2}\right) \geq 2, we'll follow these steps:

  1. Ensure that the argument of the logarithm is positive and the base of the logarithm is greater than 1.
  2. Express everything in terms of a single logarithm.
  3. Eliminate the logarithm.
  4. Solve the resulting inequality.

Let's proceed step by step:

  1. Ensure the Argument and Base are Valid:

    • The argument of the logarithm must be positive:

      (x6)2x2>0\frac{(x-6)^2}{x-2} > 0

      This means that both (x6)2(x-6)^2 and x2x-2 must have the same sign, and neither can be zero.

    • The base of the logarithm, 6x6-x, must be greater than 1:

      6x>16-x > 1

      Solving this inequality gives x<5x < 5.

  2. Express Everything in Terms of a Single Logarithm:

    Rewrite the inequality using a common base for both sides:

    log6x((x6)2x2)2\log_{6-x}\left(\frac{(x-6)^2}{x-2}\right) \geq 2

    ln((x6)2x2)ln(6x)2\frac{\ln\left(\frac{(x-6)^2}{x-2}\right)}{\ln(6-x)} \geq 2

  3. Eliminate the Logarithm:

    Raise both sides to the power of ln(6x)\ln(6-x) (since ln(6x)>0\ln(6-x) > 0):

    ln((x6)2x2)2ln(6x)\ln\left(\frac{(x-6)^2}{x-2}\right) \geq 2\ln(6-x)

  4. Solve the Resulting Inequality:

    Now, we need to solve this inequality. Be careful with the domain of the logarithms.

    (x6)2x2e2ln(6x)\frac{(x-6)^2}{x-2} \geq e^{2\ln(6-x)}

    (x6)2x2(6x)2\frac{(x-6)^2}{x-2} \geq (6-x)^2

    (x6)2(x2)(x10)(x-6)^2 \geq (x-2)(x-10)

    This is a quadratic inequality. Let's simplify:

    x28x+36x212x+20x^2 - 8x + 36 \geq x^2 - 12x + 20

    4x164x \leq -16

    x4x \leq -4

However, this solution is not valid in the original inequality because it would make the argument of the logarithm negative (6x6-x would be negative), which is not allowed.

Thus, the original inequality has no valid solutions.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality log6(x)((x6)2/(x2))2\log_6(x)((x-6)^2/(x-2)) \geq 2, we can start by getting rid of the logarithm and simplifying the expression. The base of the logarithm is 6, so we can rewrite the equation as an exponential equation:

62(x6)2/(x2)6^2 \leq (x-6)^2/(x-2)

Now, let's solve for xx:

62(x6)2/(x2)6^2 \leq (x-6)^2/(x-2)

36(x6)2/(x2)36 \leq (x-6)^2/(x-2)

Now, multiply both sides by x2x-2 to eliminate the fraction:

36(x2)(x6)236(x-2) \leq (x-6)^2

Expand the right side:

36x72x212x+3636x - 72 \leq x^2 - 12x + 36

Rearrange the terms and set the inequality to zero:

x212x+3636x+720x^2 - 12x + 36 - 36x + 72 \geq 0

x248x+1080x^2 - 48x + 108 \geq 0

Now, we have a quadratic inequality. Let's solve it. We can first simplify the inequality by dividing all terms by 3:

(1/3)x216x+360(1/3)x^2 - 16x + 36 \geq 0

Now, we can factor the quadratic:

(1/3)(x248x+108)0(1/3)(x^2 - 48x + 108) \geq 0

(1/3)(x6)(x18)0(1/3)(x-6)(x-18) \geq 0

Now, we have factored the inequality. We can analyze the sign of each factor and determine the sign of the expression for different intervals on the number line.

  1. x6x-6 changes sign at x=6x = 6.
  2. x18x-18 changes sign at x=18x = 18.

Now, we can create a sign chart:

x6x-6x18x-18(1/3)(x6)(x18)(1/3)(x-6)(x-18)
x<6x < 6---
6<x<186 < x < 18++--
x>18x > 18++++++

The expression (1/3)(x6)(x18)(1/3)(x-6)(x-18) is greater than or equal to zero in the intervals [6,18][6, 18] and x=6x = 6 (including the endpoints). So, the solution to the inequality is:

x[6,18]x \in [6, 18]

In interval notation, the solution is [6,18][6, 18].

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос