Вопрос задан 18.06.2023 в 13:17. Предмет Математика. Спрашивает Станиславский Даниил.

На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Однажды 63

жителя острова расселись за 9 столов, по 7 человек за каждым. Каждого из этих 63 жителей спросили: «Столов, за которыми сидят хотя бы 4 рыцаря, больше четырёх?»
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Raud Angelina.

Ответ:

16 и 47

Пошаговое объяснение:

На первый вопрос. Раз рыцари говорят правду, то они и отвечали Да.

А их будет 4 стола по 4 человека = 16 рыцарей. То есть 16 ответов да.

На второй вопрос. Ну а ответ нет говорят тогда все остальные.

63 - 16 = 47 человек.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The Island of Knights and Liars

On the island, there are two types of inhabitants: knights, who always tell the truth, and liars, who always lie. There are a total of 63 residents on the island, and they have seated themselves at 9 tables, with 7 people at each table. Each of the 63 residents was asked the following question: "Are there more than four knights sitting at the tables?"

To solve this problem, we need to determine the number of knights and liars sitting at the tables based on their responses.

Analyzing the Responses

Let's analyze the possible responses and what they imply:

1. If a resident says "Yes," it means that there are indeed more than four knights sitting at the tables. This response can only come from a knight, as liars always lie. 2. If a resident says "No," it means that there are not more than four knights sitting at the tables. This response can come from either a knight or a liar.

Solution

To solve this problem, we need to count the number of "Yes" responses and determine the number of knights and liars based on that count.

Let's assume that there are x knights and y liars sitting at the tables. Since there are 63 residents in total, we have the equation:

x + y = 63 Now, let's consider the number of "Yes" responses. If we count the number of tables where there are at least four knights sitting, we can determine the number of "Yes" responses.

Since there are 9 tables in total, we have the equation:

4x + 0y = Number of "Yes" responses

Simplifying this equation, we get:

4x = Number of "Yes" responses Now, let's consider the number of "No" responses. Since this response can come from either a knight or a liar, we cannot determine the exact number of "No" responses.

Conclusion

In conclusion, we can determine the number of "Yes" responses, which corresponds to the number of tables where there are at least four knights sitting. However, we cannot determine the exact number of "No" responses, as this response can come from both knights and liars.

To solve this problem, we need to count the number of "Yes" responses and use that information to determine the number of knights and liars sitting at the tables.

Please note that the search results provided by You.com did not provide specific information about the solution to this problem. However, the analysis and solution provided above are based on logical reasoning and mathematical principles.

I hope this explanation helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос