
На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Однажды 63
жителя острова расселись за 9 столов, по 7 человек за каждым. Каждого из этих 63 жителей спросили: «Столов, за которыми сидят хотя бы 4 рыцаря, больше четырёх?» Какое наибольшее число жителей могли ответить «Да»? Какое наибольшее число жителей могли ответить «Нет»?

Ответы на вопрос

Ответ:
16 и 47
Пошаговое объяснение:
На первый вопрос. Раз рыцари говорят правду, то они и отвечали Да.
А их будет 4 стола по 4 человека = 16 рыцарей. То есть 16 ответов да.
На второй вопрос. Ну а ответ нет говорят тогда все остальные.
63 - 16 = 47 человек.



The Island of Knights and Liars
On the island, there are two types of inhabitants: knights, who always tell the truth, and liars, who always lie. There are 63 residents on the island, and they have seated themselves at 9 tables, with 7 people at each table. Each of the 63 residents was asked the following question: "Are there more than four knights sitting at tables?" We need to determine the maximum number of residents who could answer "Yes" and the maximum number who could answer "No."
To solve this problem, let's consider the possibilities for the number of knights sitting at the tables.
Analyzing the Possibilities
1. If there are 4 or fewer knights sitting at the tables, then all the residents would answer "No" to the question. This is because the question asks if there are more than four knights, and if there are only four or fewer, the answer would be "No."
2. If there are 5 knights sitting at the tables, then all the residents would answer "Yes" to the question. This is because the question asks if there are more than four knights, and if there are exactly five, the answer would be "Yes."
3. If there are 6 knights sitting at the tables, then only the knights themselves would answer "Yes" to the question. The liars would answer "No" because they always lie.
4. If there are 7 knights sitting at the tables, then all the residents would answer "Yes" to the question. This is because the question asks if there are more than four knights, and if there are exactly seven, the answer would be "Yes."
Based on these possibilities, we can determine the maximum number of residents who could answer "Yes" and the maximum number who could answer "No."
Maximum Number of Residents Answering "Yes"
To find the maximum number of residents who could answer "Yes," we need to consider the scenarios where the maximum number of knights is present at the tables. From the possibilities mentioned above, we can see that if there are 5 or 7 knights sitting at the tables, all the residents would answer "Yes." Therefore, the maximum number of residents who could answer "Yes" is 63.
Maximum Number of Residents Answering "No"
To find the maximum number of residents who could answer "No," we need to consider the scenarios where the minimum number of knights is present at the tables. From the possibilities mentioned above, we can see that if there are 4 or fewer knights sitting at the tables, all the residents would answer "No." Therefore, the maximum number of residents who could answer "No" is 63.
In summary, the maximum number of residents who could answer "Yes" is 63, and the maximum number of residents who could answer "No" is also 63.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili