
Поезд, двигаясь равномерно со скоростью 57 км/ч, проезжает мимо пешехода, идущего по
платформе параллельно путям со скоростью 3 км/ч навстречу поезду, за 36 секунд. Найдите длину поезда в метрах. Запишите решение и ответ.

Ответы на вопрос

Ответ:
Пошаговое объяснение:
Длина поезда будет равна сумме скоростей поезда и пешехода, умноженной на время движения поезда мимо пешехода:
0,006 км м 600



Відповідь:
Покрокове пояснення:
36с=0.01часа
S=Vпоезда×t=57×0.01=0.57км
S=Vпешехода×t=3×0.01=0.03км
Длина поезда=0.57-0.03=0.54км=540м



Problem Analysis
We are given that a train is moving uniformly at a speed of 57 km/h and passes a pedestrian walking parallel to the tracks in the opposite direction at a speed of 3 km/h. We need to find the length of the train in meters.Solution
To solve this problem, we can use the relative speed concept. The relative speed is the difference between the speeds of two objects moving in opposite directions.Let's denote the speed of the train as V_train and the speed of the pedestrian as V_pedestrian. The relative speed between the train and the pedestrian is given by:
Relative Speed = V_train + (-V_pedestrian)
Since the pedestrian is moving in the opposite direction, we take the negative of their speed.
We are given that the relative speed is equal to the distance covered by the train in a given time. Let's denote the distance covered by the train as D_train and the time taken as T.
Relative Speed = D_train / T
We can now set up the equation:
V_train + (-V_pedestrian) = D_train / T
Substituting the given values:
57 km/h + (-3 km/h) = D_train / 36 seconds
Simplifying the equation:
54 km/h = D_train / 36 seconds
To convert the speed from km/h to m/s, we divide by 3.6:
15 m/s = D_train / 36 seconds
Now, we can solve for the length of the train, D_train:
D_train = 15 m/s * 36 seconds
D_train = 540 meters
Therefore, the length of the train is 540 meters.
Answer
The length of the train is 540 meters.Explanation
The train is moving at a speed of 57 km/h, and it passes a pedestrian walking parallel to the tracks in the opposite direction at a speed of 3 km/h. The relative speed between the train and the pedestrian is the sum of their speeds, which is 57 km/h + (-3 km/h) = 54 km/h. This relative speed is equal to the distance covered by the train in a given time. Solving for the distance, we find that the length of the train is 540 meters.

Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili