
(√2 )^(log2 5) ∙ log 3(27)


Ответы на вопрос




To simplify the expression (√2)^(log2 5) * log3(27), let's break it down step by step.
Step 1: Simplify the exponent (√2)^(log2 5). To simplify this, we need to apply the properties of exponents. When a base is raised to a power and then raised to another power, we multiply the exponents. In this case, (√2)^(log2 5) can be rewritten as 2^(1/2)^(log2 5). Applying the exponent property, we have 2^[(1/2) * (log2 5)]. Now, we can simplify the exponent by multiplying the fractions: (1/2) * (log2 5) = log2 5^(1/2). Therefore, (√2)^(log2 5) simplifies to 2^(log2 5^(1/2)).
Step 2: Simplify log3(27). The logarithm with a base of 3 of 27 can be expressed as log3 27 = 3. This is because 3^3 = 27.
Now, we can combine the simplified expressions: 2^(log2 5^(1/2)) * log3(27) = 2^(log2 5^(1/2)) * 3 = 2^(log2 √5) * 3
The expression 2^(log2 √5) represents raising 2 to the power of the logarithm base 2 of the square root of 5. Since the base of the logarithm is 2, and we are raising 2 to that power, we end up with √5. Therefore, we can simplify the expression further:
= √5 * 3 = 3√5
So, the simplified form of the expression (√2)^(log2 5) * log3(27) is 3√5.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili