
Вопрос задан 11.06.2018 в 08:51.
Предмет Геометрия.
Спрашивает Кот Алёна.
Прямая AB касается окружности с центром O и радиусом 5 см в точке A. Найдите OB, если AB=12см


Ответы на вопрос

Отвечает Головина Алина.
ОА перпендикулярно АВ, т.к. АВ - касательная к окружности, О - центр окружности, а отрезок из центра окружности к точки касания окружности с касательной перпендикулярен касательной. Значит треугольник АОВ - прямоугольный. АВ=12, ОА=5 (т.к. ОА - радиус окружности), т.к. точка А принадлежит окружности, О - центр окружности. Значит ОВ^2=АО^2+AB^2 по теореме Пифагора. То есть ОВ^2=5^2+12^2=25+144=169. Значит ОВ^2=169. ОВ=корню из 169, равно 13.
Ответ: ОВ=13.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili