Вопрос задан 10.06.2018 в 18:58. Предмет Геометрия. Спрашивает Чернишов Валерій.

В равнобедренной трапеции верхнее основание равно боковой стороне, а диагональ перпендикулярна

боковой стороне. Определите углы данной трапеции.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шевцова Кира.

пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим  ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰   ⇒  90⁰ =3х  ⇒  х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰

 

Ответ: 60⁰,120⁰,120⁰,60⁰.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос