
найдите объем конуса, если хорда его основания, равная 6 корней из 2, отсекает четверть окружности
основания, а угол между образующей и плоскостью основания равен 45.

Ответы на вопрос

Найдите объем конуса, если хорда
его основания, равная 6√2,
отсекает четверть окружности основания,
а угол между образующей
и плоскостью основания равен 45°.
Объем конуса по классической формуле
V=1/3 S*H
Высота Н равна радиусу основания, т.к. образующая АК, АО радиус основания и высота КО составляют равнобедренный прямоугольный треугольник -
так как образующая с основанием составляет равнобедренный треугольник с углом при основании 45°.
Радиус найдем из равнобедренного прямоугольного треугольника, гипотенузой в котором данная в условии хорда - она отсекает четверть окружности, т.е дугу с центральным углом 360:4=90°.
Длина хордыАС= 6√2.
Соединив ее концы с центром окружности,
получим равнобедренный прямоугольный треугольник с катетами-радиусами основания.
Мы помним, что если гипотенуза равнобедренного прямоугольного треугольника равна а√2- катет равен а ( можно проверить по т.Пифагора).
Итак, радиус конуса - 6, высота- 6.
S=πr²=π6²=36π
V=1/3·36π·6=72 (единиц объема)



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili