Вопрос задан 03.08.2020 в 16:57. Предмет Геометрия. Спрашивает Клековкин Саша.

26. Две касающиеся внешним образом в точке K окружности, радиусы которых равны 16 и 48, вписаны в

угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K , пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крылов Артём.
O1-центр меньшей окр.
O2-центр большей окр.
О1Н-перпендикулярен ВО2
НО2 равен 48-16=32
О1О2=16+48=64
угол НО1О2=30 по синусу угла
АК=48*2-48=48(через синус АО2 в 2 раза больше ВО2)
По теореме пифагора КС = 16\sqrt{3}
ВС= 32\sqrt{3}
R= \frac{abc}{4S}
R=32

0 0
Отвечает Бывалин Александр.
Ответ в приложенном рисунке.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос