Вопрос задан 07.06.2018 в 18:48. Предмет Геометрия. Спрашивает Панферов Святослав.

ДАЮ 40 БАЛЛОВ. СРООЧННОО На отрезке AB равном 14 см как на диаметре построена полуокружность. Точка

C лежит на отрезке AB. Определите длину границы выделенной фигуры, если AC и BC – диаметры полуокружностей.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шакирова Даяна.

Длина окружности С=2πR, значит длина полуокружности с=С/2=πR.
АС+ВС=АВ.
Пусть радиус R - радиус большой полуокружности а r1 и r2 - радиусы малых полуокружностей. r1+r2=R.
Длина дуги АВ: ∪АВ=πR.
∪AC=πr1, ∪BC=πr2.
Сумма всех дуг:
Р=πR+πr1+πr2=π(R+r1+r2)=π(R+R)=2πR=πD=АВ·π=14π - это ответ.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос