
Вопрос задан 25.06.2020 в 13:59.
Предмет Геометрия.
Спрашивает Злобин Максим.
А) Изобразите окружность соответствующей уравнению (x-5)^2 + (y-10)^2= 100 b) Определите
взаимное расположение прямой y= 20 и окружности (x-5)^2 + (y-10)^2= 100

Ответы на вопрос

Отвечает Комарова Карина.
Ответ:
b) прямая является касательной к окружности.
Объяснение:
Уравнение окружности имеет вид
(x - x₀)² + (y - y₀)² = R², где
(x₀; y₀) - координаты центра окружности,
R - радиус окружности.
(x - 5)² + (y - 10)² = 100
(5; 10) - центр окружности,
R = √100 = 10 - радиус окружности.
а) Окружность изображена на рисунке.
b) Расстояние от центра окружности до прямой у = 20:
d = |y₀ - 20| = |10 - 20| = |- 10| = 10
d = R = 10
Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая является касательной к окружности.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili