
Вопрос задан 15.06.2020 в 09:12.
Предмет Геометрия.
Спрашивает Наутан Алия.
В параллелограмме АВСД через точку пересечения диагоналей проведена прямая, которая отсекает на
сторонах ВС и АД отрезки ВЕ = 1,6 и АК = 6,4. Точка М – точка пересечения прямых АВ и ЕК. Найдите периметр и площадь треугольника АВД, если ВМ = 1, а величина угла ВАД 60°.

Ответы на вопрос

Отвечает Неделько Славик.
Ответ:
P = 22 ед. S = 12√3 ед².
Объяснение:
Треугольники АМК и ВМЕ подобны по двум углам, так как ВЕ параллельна АК. Из подобия имеем:
ВЕ/АК=ВМ/АМ => AM = ВМ*АК/ВЕ = 1*6,4/1,6 = 4 ед.
АВ = АМ - ВМ = 4-1 = 3.
AD =AK+KD = AK+BE = 8ед. (так как KD=ВЕ из равных треугольников ВЕО и KDO - точка О - точка пересечения диагоналей).
Тогда периметр равен 2(3+8) = 22ед.
Площадь равна АВ*AD*Sin60 = 3*8*√3/2 = 12√3 ед².



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili