Вопрос задан 15.05.2020 в 13:07. Предмет Геометрия. Спрашивает Bobnyuk Jana.

В равнобедренной трапеции длины оснований равны 14 см и 40 см, а длина высоты - 9 см. Найдите

радиус окружности, описанной около этой трапеции. Известно, что центр окружности лежит внутри трапеции
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Холод Влад.
Пусть а и в - нижнее и верхнее основания трапеции АВСД.
Находим боковую сторону трапеции.
с = √(9² + ((40-14)/2)²) =√(81+169) = √250 =  15.81139 см.
Радиус окружности, описанной около этой трапеции, равен радиусу окружности, описанной около треугольника АСД.
Находим АС - это диагональ трапеции и сторона 
треугольника АСД.
АС = 
√(9² + (14+((40-14)/2))²) = √(81 +  729) = √810 =  28.4605 см.
Синус угла А равен: sin A = 9/
√810.
Тогда R = a/(2sin A) =
√250/(2*(9/√810)) = √250*√810/(2*9) =
= √ 202500/18 = 450/18 = 25 см.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос