
Вопрос задан 03.06.2018 в 13:12.
Предмет Геометрия.
Спрашивает Катеринич Саша.
найти длину окружности описанной около правильного треугольника со стороной 12см и площадь круга
вписанного в этот треугольник.

Ответы на вопрос

Отвечает Ремизова Лера.
Решение: Длина окружности равна 2*pi*r, где r – радиус окружности. Радиус окружности, описанной около треугольника равен R=a*корень(3)\3.
R= a*корень(3)\3=12*a*корень(3)\3= 4*корень(3).
Радиус окружности, вписанной в треугольник равен
r=a*корень(3)\6
r=a*корень(3)\6= 12*корень(3)\6= 2*корень(3).
Длина описанной окружности равна:
2*pi*4*корень(3)=8*корень(3)*pi
Длина вписанной в треугольник окружности равна
2*pi* 2*корень(3)=4*корень(3)*pi
Ответ:8*корень(3)*pi,4*корень(3)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili