
Вопрос задан 06.05.2020 в 16:06.
Предмет Геометрия.
Спрашивает Лавренчук Виктория.
В равнобедренном треугольнике ABC с основанием BC проведена медиана AM. Найдите медиану AM, если
периметр треугольника ABC равен 155 см, а периметр треугольника ABM равен 95,8 см.

Ответы на вопрос

Отвечает Ilina Elizabeth.
Ответ:
Медиана AM = 18,3 см.
Объяснение:
По условию ΔABC равнобедренный. AB = AC.
AM медиана, отрезок, проведенный из вершины треугольника на середину противолежащей стороны. BM = MC.
Медиана в равнобедренном треугольнике является осью симметрии треугольника и делит его на две равных части.
Периметр ΔABC P₁ = AB + BC + AC = 155 см. Тогда сумма отрезков AB + BM = P₁ / 2 = 155 см / 2 = 77,5 см.
По условию периметр ΔABM P₂ = 95,8 см;
P₂= AB + BM + AM = 77,5 см + AM = 95,8 см;
AM = 95,8 см - 77,5 см = 18,3 см.
AM = 18,3 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili