
Вопрос задан 30.03.2020 в 16:58.
Предмет Геометрия.
Спрашивает Ружникова Ульяна.
Дан равнобедренный треугольник АВС с основанием АС. Вписанная в него окружность с центром О
касается боковой стороны ВС в точке Р и пересекает биссектрису угла В в точке Q. Докажите, что отрезки QP и ОС параллельны.

Ответы на вопрос

Отвечает Вишневская Александра.
Ответ:
ВН - биссектриса равнобедренного треугольника, проведенная к основанию, значит ВН - высота.
ОР⊥ВС как радиус, проведенный в точку касания.
ΔOPQ равнобедренный (OP = OQ как радиусы), значит
∠OPQ = ∠OQP = α
∠POH = ∠OPQ + ∠OQP = 2α как внешний угол треугольника OPQ.
ΔСОН = ΔСОР по катету и гипотенузе (∠СНО = ∠СРО = 90°, ОН = ОР как радиусы, ОС - общая), значит
∠СОР = ∠СОН = 1/2 ∠РОН = α.
Итак, ∠OPQ = ∠COP = α, а эти углы - внутренние накрест лежащие при пересечении прямых QP и ОС секущей ОР, значит
QP ║ OC.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili