
Вопрос задан 30.05.2018 в 00:05.
Предмет Геометрия.
Спрашивает Леонов Саша.
В остроугольном треугольнике MNP биссектриса угла М пересекает высоту NK в точку О, причем ОК = 9
см. Найти расстояние от точки О до прямой МN.

Ответы на вопрос

Отвечает Медвідь Оксана.
Рассмотрим треугольники OMK и МFО ( FO — расстояние от точки О до прямой МN).
Угол ОКМ = 90 градусов, угол ОFМ = 90 градусам ( т. к. расстояние от точки до прямой — это перпендикуляр). Гипотенуза ОМ — общая у обоих треугольников, угол FМО = углу ОМК (т. к. МH — биссектриса угла М, т. Н принадлежит прямой NР).
Следовательно, треугольники OMK и МFО равны по признаку равенства прямоугольных треугольников ( если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны).
Следовательно, OF = OK = 9 см., т. е. расстояние от точки О до прямой МN = 9 см.
Ответ: расстояние от точки О до прямой МN = 9 см


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili