Вопрос задан 11.01.2020 в 22:52. Предмет Геометрия. Спрашивает Сергеев Виктор.

Угол С равнобедренной трапеции ABCD на 40 градусов больше угла А.Найдите градусную меру угла В

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Демьянова Милена.

1) <A=<B (ABCD-р./б. трапеция)

2) <B=180-40

<A=<B=140 градусов

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть угол А в равнобедренной трапеции ABCD равен х градусов.

Так как трапеция ABCD равнобедренная, то угол С также равен х градусов.

По условию, угол С на 40 градусов больше угла А. То есть, угол С = х + 40 градусов.

Так как сумма углов в трапеции равна 360 градусов, то угол В можно найти по формуле:

Угол В = 360 - угол А - угол С - угол D.

Угол D в равнобедренной трапеции равен углу А, поэтому угол D = х градусов.

Тогда угол В = 360 - х - (х + 40) - х.

Упрощая выражение, получим:

Угол В = 360 - 3х - 40.

Угол В = 320 - 3х градусов.

Таким образом, градусная мера угла В равна 320 - 3х градусов.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос