
Найдите расстояние от точки до вершины угла в 60° которая лежит на расстояний a и b от сторон этого
угла

Ответы на вопрос

Точка А лежит внутри угла, равного 60°. Расстояния от точки А до сторон угла равны a и b. Найдите расстояние от точки А до вершины угла.
Расстояние от точки до прямой равно длине отрезка, проведенного перпендикулярно от точки к прямой.
Обозначим вершину угла В , расстояние от А до одной стороны АС=а, расстояние до другой стороны АD=b.
Сумма ∠С+∠D=2•90°=180°
Сумма углов четырехугольника 360°. ⇒∠ В+∡А=180°
Если сумма противоположных углов четырехугольника равна 180°, его можно вписать в окружность.
Опишем эту окружность. Искомое расстояние - её диаметр, т.к. на АВ опираются вписанные углы, равные 90°
Соединим С и D.
Вершины ∆ АСD лежат на окружности, он - вписан в эту окружность.
Диаметр описанной около треугольника окружности равен отношению стороны треугольника к синусу противолежащего ей угла.
Угол САD=180°-60°=120°
По т.косинусов СD²=AC²+AD²-2•AC•AD•cos120°
CD²=a²+b²-2ab•(-1/2)=a²+b²+ab
По т.синусов АВ=2R=CD:sin120°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili