
Какова вероятность того, что наудачу брошенная в круг точка окажется внутри вписанного в него
правильного шестиугольника?

Ответы на вопрос

Для нахождения вероятности этого надо найти соотношение площадей круга и шестиугольника. Площадь круга, как известно:
S = П*r^2, где П=3,14, r - радиус.
Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) = / 2 * r
Отсюда площадь треугольника: 1/2 * r * / 2 * r =
/ 4* r^2
Площадь шестиугольника равна: 6 * / 4* r^2 = 1,5 *
* r^2
Теперь делим её на площадь круга:
1,5 * * r^2 / (П*r^2) = 1,5 *
/ П
Численно это примерно равно 0,83 или 83%.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili