
Вопрос задан 01.04.2018 в 10:32.
Предмет Геометрия.
Спрашивает Гаврилюк Юлия.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM
равна 20. Найдите площадь четырехугольника ABMN. Получиться 60?

Ответы на вопрос

Отвечает Яцук Макс.
MN-средняя линия треугольника АВС, по теореме о средней линии MN=АВ/2 => 2MN=AB
Проведем высоту из вершины С
Scnm=1/2*CE*MN=20 (по условию)
CE*MN=20*2=40
Рассмотрим треугольник АСD, NE параллельно АD и идет из середины стороны АС=> NE-средняя линия треугольника ACD, значит CE=ED
Sabmn=(MN+AB)/2*ED подставим то, что раньше написали и получим=>
Sabmn=(MN+2MN)/2*CE=3MN/2*CE=1,5MN*CE=1,5*40=60
Ответ: Sadmn=60.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili