
Вопрос задан 26.06.2019 в 19:11.
Предмет Геометрия.
Спрашивает Костырин Андрей.
площадь прямоугольной трапеции равна 120 см,а ее высота 8 см. найдите все стороны трапеции,если
одно из ее оснований на 6 см болльше другого

Ответы на вопрос

Отвечает Гаязова Виолетта.
Пусть АВСD - данная прямоугольная трапеция, АВ||CD; AD=8 см, S(ABCD)=120 кв.cм, CD=AB+6
Проведем высоту ВК=AD=8 см, тогда ABKD - прямоугольник, ВКС - прямоугольный треугольник с прямым углом К
AB=DK;
Площадь трапеции равна половине произведения суммы ее оснований на высоту:
S(ABCD)=(AB+CD)*AD:2;
(AB+AB+6)*8:2=120;
(2AB+6)*4=120;
2AB+6=120:4;
2AB+6=30; /:2
AB+3=15;
AB=15-3;
AB=12;
CD=AB+6=12+6=18;
DK=CD-DK=18-12=6;
по теореме Пифагора
ответ: 12 см,10 см, 18 см, 8 см - стороны трапеции


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili