
Вопрос задан 23.05.2018 в 20:13.
Предмет Геометрия.
Спрашивает Ульянова Уля.
В равнобедренном треугольнике основание=16 а боковые стороны=10.Найти расстояние от точки
пересечения медиан до вершины треугольника.

Ответы на вопрос

Отвечает Хабибуллин Данияр.
В равнобедренном треугольнике медиана, проведенная к основанию, является также и высотой. Рассмотрим получившийся прямоугольный треуг-ик АВ1В.
Здесь АВ1=СВ1=16:2=8 (т.к. ВВ1 - медиана). По теореме Пифагора в АВ1В находим неизвестный катет ВВ1:
BB1=√AB² - AB1² = √100-64=√36=6
Зная, что медианы треугольника АВС пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины, выразим ОВ.
ОВ : ОВ1 = 2 : 1 (всего частей получается 2+1=3). Если ВВ1 = 6, то каждая из трех частей равна 6:3=2. На ОВ приходится 2 части, значит, ОВ=2*2=4.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili