
Вопрос задан 22.06.2019 в 06:34.
Предмет Геометрия.
Спрашивает Гусаров Никита.
На сторонах AB и AC треугольника ABC взяты соответственно точки D и E так, что длина отрезка DE
равна 5см и BD/DA=2/3, плоскость a(альфа) проходит через точки B и C и параллельна отрезку DE. Найдите длину отрезка BC. Уже понял что надо док-ть подобие треугольников ABC и DAE, но не могу составить пропорцию. Помогите составить и решить пропорцию и объяснить это.

Ответы на вопрос

Отвечает Тараненко Анастасия.
Плоскость треугольника ABC проходит через прямую DE, параллельную плоскости α, и пересекает плоскость α по прямой BC, следовательно DE||BC.
△ADE подобен △ABC (углы при основаниях равны, т.к. являются соответственными углами при параллельных DE и BC).
BD/DA=2/3 <=> DA=(3/2)BD
BA=BD+DA = BD+(3/2)BD = (5/2)BD
DA/BA = (3/2)BD/(5/2)BD = 3/5
Коэфициент подобия △ADE и △ABC равен отношению соответствующих сторон: k= DA/BA= 3/5
DE/BC=3/5
BC= 5*5/3 = 25/3 = 8,33 (см)
△ADE подобен △ABC (углы при основаниях равны, т.к. являются соответственными углами при параллельных DE и BC).
BD/DA=2/3 <=> DA=(3/2)BD
BA=BD+DA = BD+(3/2)BD = (5/2)BD
DA/BA = (3/2)BD/(5/2)BD = 3/5
Коэфициент подобия △ADE и △ABC равен отношению соответствующих сторон: k= DA/BA= 3/5
DE/BC=3/5
BC= 5*5/3 = 25/3 = 8,33 (см)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili