Вопрос задан 05.06.2019 в 03:16. Предмет Геометрия. Спрашивает Дорофеев Олег.

Стереометрия. Максимальный балл! Можно без рисунка. В правильной шестиугольной пирамиде SABCDEF с

вершиной S боковое ребро вдвое больше стороны основания. а) Докажите, что плоскость, проходящая через середины рёбер SA и SE и вершину C, делит ребро SB в отношении 1 : 3, считая от вершины B. б) Найдите отношение, в котором плоскость. проходящая через середины рёбер SA и SE и вершину C, делит ребро SF, считая от вершины S.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пожарская Катя.
Рассмотрим осевое сечение пирамиды, изобразив его как вид сбоку.
На рисунке SAF, SAB и SBC - грани пирамиды; А1, М1 и К1 - точки пересечения плоскости и рёбер SF.SA и SB соответственно.
По условию боковое ребро вдвое больше стороны основания.
Пусть сторона основания будет равна а, тогда боковая сторона равна 2а.
АВ=FO=CO=a.
а) Высота пирамиды из треугольника SCO:
SO=√(SC²-CO²)=√(4a²-a²)=a√3.
Из тр-ка SM1M2 SM2=SM·cos60=0.5a·1/2=a/4. 
Проекции SM2 и МО ра двух рисунках равны. МО=а/4.
СМ=СО+МО=а+а/4=5а/4.
Треугольники SAO и M1AO подобны по трём углам, значит SA/M1A=SO/M1M ⇒ M1M=SO/2=a√3/2.
В ΔСМ1М tgC=M1M/CM=4a√3/(10a)=2√3/5.
В ΔBSO tgВ=SO/BO=2а√3/а=2√3. (т.к. ВО=АВ/2=а/2).
Пусть КВ=х, тогда СК=КВ+СВ=х+а/2.
В ΔСК1К К1К=СК·tgC=(x+а/2)·2√3/5.
В ΔВК1К К1К=КВ·tgВ=2х√3.
Объединим уравнения:
(х+а/2)·2√3/5=2х√3,
2х√3+а√3=10х√3,
а√3=8х√3,
х=а/8.
Треугольники ВSО и ВК1К подобны по трём углам, значит:
K1B/SB=ВК/ВО=а/8:а/2=1:4 ⇒
SK1=3K1B, значит К1В:SK1=1:3. 
Доказано.
б) Пусть АF=у, тогда AC=FC-y=2a-y.
В ΔFA1A ∠F=60° (так как FO=SF/2 ∠F=60°), А1А=AF·tgF=у√3.
В ΔСА1А А1А=АС·tgС=(2а-у)·2√3/5.
Объединив уравнения получим:
у√3=(2а-у)·2√3/5,
5у=4а-2у,
7у=4а, 
у=4а/7.
Коэффициент подобия треугольников FA1A и FSO:
k=FA/FO=4a/7a=4/7.
А1F=SF·k=2a·4/7=8a/7.
SA1=SF-A1F=2a-8a/7=6a/7.
SA1:A1F=6a/7:8a/7=3:4 - это ответ.

Пришлось повозиться.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос