
Вопрос задан 24.05.2019 в 04:19.
Предмет Геометрия.
Спрашивает Николаенко Виталик.
В треугольнике АВС угол С прямой АС=52 ВС=4.найдите косинус внешнего угла при вершине А


Ответы на вопрос

Отвечает Комакова Катя.
Найдем гипотенузу треугольника АВС по Пифагору.
АВ=√((АС²+ВС²) или АВ=√(2704+16)=√2720 =4√170.
Косинус угла А равен отношению прилежащего катета к гипотенузе или
CosA=52/(4√170).
Внешний угол при вершине А треугольника - это смежный угол с углом А
и равен 180 - А.
Следовательно, по формуле приведения Cos (180-α) = - cosα имеем:
Косинус внешнего угла равен Cos(180-А)= -52/(4√170) ≈- 0,997.
α = arccos(-0,997) ≈ 176° (угол тупой).
АВ=√((АС²+ВС²) или АВ=√(2704+16)=√2720 =4√170.
Косинус угла А равен отношению прилежащего катета к гипотенузе или
CosA=52/(4√170).
Внешний угол при вершине А треугольника - это смежный угол с углом А
и равен 180 - А.
Следовательно, по формуле приведения Cos (180-α) = - cosα имеем:
Косинус внешнего угла равен Cos(180-А)= -52/(4√170) ≈- 0,997.
α = arccos(-0,997) ≈ 176° (угол тупой).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili