Вопрос задан 21.05.2019 в 05:15. Предмет Геометрия. Спрашивает Момотюк Юлия.

3. Докажите, что если прямые, на которых лежат одна диагональ и одна средняя линия (отрезок,

соединяющий средины противоположных сторон) четырехугольника являются его осями симметрии, то четырехугольник является квадратом.ПЛИЗ СРОЧНО!!!!!ДАЮ 50 баллов!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зинолла Рустем.
Если ось симметрии четырёхугольника проходит через его среднюю линию, то отрезки сторон, разделённые средней линией, перпендикулярны оси симметрии, значит они параллельны. 
Если осью симметрии четырёхугольника является его диагональ, то она делит его на два равных равнобедренных треугольника с основанием, лежащим на диагонали.
Итак, в нашем четырёхугольнике все стороны равны и параллельны, значит он, как минимум, ромб. Средняя линия ромба параллельна двум сторонам и, являясь осью симметрии, перпендикулярна двум другим, значит стороны ромба попарно параллельны и перпендикулярны, значит наш четырёхугольник - квадрат.
Доказано.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос