Вопрос задан 12.05.2019 в 20:22. Предмет Геометрия. Спрашивает Романова Алина.

Из вершины А треугольника ABC проведены перпендикуляры AM и АК к биссектрисам внешних углов этого

треугольника при вершинах B и С. Докажите, что отрезок МК равен половине периметра треугольника ABC.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мирный Владимир.
Продолжим  AM и AK до пересечения с прямой BC в точках S и T соответственно. По условию, BM - биссектриса и высота треугольника ABS. Значит ABS - равнобедренный (AB=SB) и BM - его медиана. Аналогично, CK - медиана равнобедренного ACT (AC=CT). Таким образом, ST=SB+BC+CT=AB+BC+AC и MN -  средняя линия треугольника AST. Т.е. MN=ST/2=(AB+BC+AC)/2.





0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос