Вопрос задан 12.05.2019 в 15:22. Предмет Геометрия. Спрашивает Петров Антон.

Как решать задачи по геометрии с помощью правила: катет прямоугольного треугольника, лежащий против

угла в 30 градусов, равен половине гипотенузы?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Арикайнен Лиза.
Так и решать.Если дана гипотенуза и угол равный 30 градусов то , чтобы найти катет , который находится против угла 30 градусов гипотенузу надо делить на 2.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дано, что катет прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы. Пусть гипотенуза треугольника равна а, а катет равен а/2. Обозначим второй катет буквой b. Используя теорему Пифагора, получаем следующее уравнение:

(a/2)^2 + b^2 = a^2

Раскроем скобки и упростим уравнение:

a^2/4 + b^2 = a^2

Перенесем все слагаемые влево:

b^2 - a^2/4 = 0

Общая форма квадратного уравнения:

b^2 - a^2/4 = (b - a/2)(b + a/2) = 0

Таким образом, у нас получается два возможных решения для второго катета:

1. b - a/2 = 0 b = a/2

2. b + a/2 = 0 b = -a/2

В первом случае, второй катет равен половине гипотенузы. Во втором случае, второй катет равен отрицательной половине гипотенузы. Очевидно, что отрицательная длина второго катета не имеет смысла в геометрическом контексте, поэтому отбрасываем второе решение.

Таким образом, нашей ответом является, что второй катет прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос