Вопрос задан 06.05.2019 в 09:38. Предмет Геометрия. Спрашивает Иванов Сергей.

Основанием пирамиды SABCD является ромб со стороной √30 и углом ВАD, равным arccos 3/4. Ребро SD

перпендикулярно основанию, а ребро SB образует с основанием угол 60 градусов. Найдите радиус сферы, проходящей через точки А, В, С и середину ребра SB. В ответ запишите R².
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Забродский Радислав.
Ну, баллов много, но задача эта совсем не сложная.
Логически она решается "на раз". Все, что надо сообразить - что середина SB - пусть это точка E - проектируется на основание прямо в центр ромба H (точку пересечения диагоналей AC и BD). Это означает, что плоскость ABC и плоскость AEC - перпендикулярны. 
Сечения сферы этими перпендикулярными плоскостями - это просто окружности, описанные вокруг треугольников ABC (в плоскости ABC) и AEC (в плоскости AEC). 
То есть на сфере есть две окружности с общей хордой AC (радиусы окружностей очевидно вычисляются из условия), расположенные в перпендикулярных плоскостях. 
Через середину AC перпендикулярно AC проходит плоскость, очевидно содержащая центр сферы - эта плоскость - геометрическое место точек, равноудаленных от A и C, и в ней центр лежит на таком же расстоянии от B и E (которые тоже лежат в этой плоскости, разумеется). Тут главное - не выдумать случайно, что центр О лежит в плоскости ABC - это не так.
А это означает, что центральное сечение является окружностью, описанной вокруг треугольника BEB1, где BB1 - диаметр окружности, описанной вокруг ABC. Точка B1 лежит на продолжении BD. 
Получается, что для решения задачи надо 1) найти диаметр окружности, описанной вокруг ABC, BB1 = d; 2) найти радиус R окружности, описанной вокруг треугольника BEB1.
Это и будет искомый радиус сферы. Теперь можно считать.
Пусть a = √30; α = arccos(3/4);
Для треугольника ABC x = BH = a*sin(α/2);
BB1 = d = a/sin(α/2); это просто теорема синусов для ABC; 
точно так же для треугольника BEB1
EH = BH*tg(60°) = x*√3;
2*R*sin(60°) = EB1; или, если возвести в квадрат,
4*R^2*(3/4) = EB1^2 = EH^2 + HB1^2 = (d - x)^2 + (x*√3)^2; или
3*R^2 = (d - x)^2 + 3*x^2; при этом d = a/sin(α/2); x = a*sin(α/2); осталось подставить.
3*R^2 = a^2*((1/sin(α/2) - sin(α/2))^2 + 3*(sin(α/2))^2) = 
= a^2*((1/2+cos(α)/2)^2/((1/2-cos(α)/2)) + 3*(1/2-cos(α)/2)); =
(подставляем числа)  
= 30*((7/8)^2/(1/8) + (3/8)) = 30*(49 + 3)/8 = 3*10*52/8;
R^2 = 520/8 = 65;
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, построим пирамиду SABCD, где основание SABD - ромб со стороной √30 и углом ВАD, равным arccos 3/4.

Так как ребро SD перпендикулярно основанию, то оно будет равно высоте пирамиды. Пусть это значение равно h.

Также известно, что ребро SB образует с основанием угол 60 градусов. Обозначим точку пересечения ребра SB с плоскостью основания как M.

Так как SABD - ромб, то угол SAD равен 180 - ВАD = 180 - arccos 3/4. Значит, угол SAD = arccos(-3/4) = arccos(3/4).

Также, угол SBA равен 60 градусов.

Из треугольника SAB мы можем найти длину ребра SA, используя теорему косинусов:

SA^2 = SB^2 + BA^2 - 2 * SB * BA * cos(SBA) SA^2 = (√30)^2 + (√30)^2 - 2 * √30 * √30 * cos(60) SA^2 = 30 + 30 - 2 * 30 * 1/2 SA^2 = 30 + 30 - 30 SA^2 = 30

Теперь мы можем найти высоту пирамиды:

h^2 = SD^2 - SA^2 h^2 = h^2 - 30 0 = -30

Это противоречие, поэтому такая пирамида не может существовать.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос