
Вопрос задан 01.05.2019 в 08:00.
Предмет Геометрия.
Спрашивает Барабанов Данил.
Найдите:высоту равнобедренного треугольника, у которого боковая сторона и основание равны
соответственно 13 и 10

Ответы на вопрос

Отвечает Нурмагомедов Рашит.
Высота BD в равнобедренном треугольнике ABC делит основание AC на две одинаковые части и при известных основании и боковой стороне вычисляется по формуле. b²=c²·a², где b=BD; c=AB=13; a=AC÷2=10÷2=5
b²=13²·5²-169-25=144
b=√144=12
Ответ: Высота BD=12
b²=13²·5²-169-25=144
b=√144=12
Ответ: Высота BD=12



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения высоты равнобедренного треугольника, у которого боковая сторона и основание равны 13 и 10 соответственно, мы можем использовать формулу для высоты равнобедренного треугольника:
h = sqrt(b^2 - (a/2)^2),
где h - высота, b - боковая сторона, a - основание.
Подставим известные значения:
h = sqrt(13^2 - (10/2)^2), h = sqrt(169 - 25), h = sqrt(144), h = 12.
Таким образом, высота равнобедренного треугольника равна 12.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili