
Вопрос задан 12.05.2018 в 01:08.
Предмет Геометрия.
Спрашивает Христофорова Ярослава.
Две стороны треугольника равны 6 см и 8 см. Медианы проведённые к этим сторонам взаимно
перпендикулярны. Найдите площадь треугольника. (По теореме Герона)

Ответы на вопрос

Отвечает Мельниченко Никита.
По условию: AB=6AD=DB=3BC=8 BF=FC=4AF┴CD
РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili