Вопрос задан 12.05.2018 в 01:08. Предмет Геометрия. Спрашивает Христофорова Ярослава.

Две стороны треугольника равны 6 см и 8 см. Медианы проведённые к этим сторонам взаимно

перпендикулярны. Найдите площадь треугольника. (По теореме Герона)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мельниченко Никита.


По условию: AB=6AD=DB=3BC=8 BF=FC=4AF┴CD

РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)

CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос